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Completeness and cut-elimination theorems are proved for some Gentzen-type sequent
calculi which are closely related to non-commutative involutive quantales.
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1. INTRODUCTION

Algebraic structures for quantum mechanics, such as ortholattices and quan-
tales, have been studied by many researchers. Logics corresponding to ortholat-
tices and their neighbors are called quantum logics in Birkhoff and von Neumann’s
sense. A number of Gentzen-type sequent calculi for such standard quantum logics
were investigated comprehensively (see. e.g. Nishimura, 1994; Takano, 1995).

Quantales were introduced by Mulvey in an attempt to cast light on the con-
nections between C∗-algebras and quantum mechanics (Mulvey, 1986; Rosenthal,
1990). A quantale-besed (non-commutative logic-theoretic) approach to quantum
mechanics was developed by Piazza (1995). It is known that (commutative ver-
sions of) quantales are one of the semantics of linear logic (Ishihara and Hiraishi,
2001; Larchey-Wendling and Galmiche, 2000; Yetter, 1990). A linear-logical un-
derstanding of quantum mechanics was established by Pratt (1993), and a linear
quantum logic and other related quantum logics were proposed by Faggian and
Sambin (1998).

Involutive quantales were introduced by Mulvey and Pelletier (1992) in order
to quantize the calculus of relations by Hoare and He (1987). Some variations of
involutive quantales, such as Gelfand quantales, von Neumann quantales and
Hilbert quantales, have also been widely studied (see e.g. Mulvey and Pelletier,
2001, 2002; Pelletier and Rosický, 1997).

Quantum logics corresponding to involutive quantales and Gelfand quan-
tales were proposed and studied by MacCaull (1997) for involutive quantales and
by Allwein and MacCaull (2001) for Gelfand quantales. In (MacCaull, 1997),
some complete Kripke-type semantics, a Gentzen-type sequent calculus and a
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relational proof system were given for such an involutive-quantale logic. The
relationship between a kind of involutive-quantale logic, called quantized intu-
itionistic linear logic (QILL), and Wansing’s extended intuitionistic linear logic
with strong negation (Wansing, 1993) was also clarified by Kamide (2004). In
(Kamide, 2004), a commutative-involutive-quantale model, a Kripke model and a
number of Gentzen-type cut-free sequent calculi having the characteristic property
of quantization principle were also given for QILL.

In the present paper, some non-commutative versions of involutive quantales
are discussed along the lines of Kamide (2004). Some cut-free sequent calculi
together with extended phase space models are given with respect to such non-
commutative versions. Then, a logical understanding of the difference between
involutive quantales and quantales can be obtained using these calculi and models.
The calculi proposed are introduced as alternatives to the standard quantum logics.

The contents of this paper are then summarized as follows.
In Section 2, three new logics: basic involutive-quantale logic (BIQL),

quasi-involutive-quantale (or twist-free-involutive-quantale) logic (QIQL) and
involutive-quantale logic (IQL) are introduced as extensions of full Lambek logic
(FL) or equivalently non-commutative intuitionistic linear logic, and the cut-
elimination theorems for BIQL and QIQL are proved using a new embedding
result. By assuming the exchange rule, the logics BIQL, QIQL and IQL are
theorem-equivalent, i.e. theorem-equivalent to QILL in (Kamide, 2004). These
syntactical investigations clarify that twist-free-involutive quantales, which corre-
spond to QIQL, are essentially equivalent to quantales, which correspond to FL.

In Section 3, an involutive-quantale model for IQL and a twist-free-involutive-
quantale model for QIQL are introduced, and the soundness theorems for IQL
and QIQL (Theorem 3.5), and the completeness theorem (with respect to the
twist-free-involutive-quantale model) for QIQL (Theorem 3.6) are addressed. The
completeness theorem (with respect to the involutive-quantale model) for IQL is
remained an open question.

In Section 4, Theorems 3.5 and 3.6 are proved along the lines of Kamide
(2004).

In Section 5, extended intuitionistic non-commutative phase models are in-
troduced for QIQL and BIQL, and the soundness and completeness theorems
(Theorem 5.5) are addressed as a main result in this paper. In such extended mod-
els, the difference from the standard intuitionistic non-commutative phase model
for FL is only to use a negative valuation v−, which characterizes the involution
operator appearing in involutive and twist-free-involutive quantales. This fact also
means semantically that twist-free-involutive quantales are essentially equivalent
to quantales.

In Section 6, Theorem 5.5 is proved using an extended version of the method
by Okada (2002). This proof simultaneously derives the cut-elimination theorems
for QIQL and BIQL.
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Prior to the detailed discussion, the language and notion used in this paper are
introduced later. Formulae are constructed from propositional variables, proposi-
tional constants 1,�, and ⊥, → (implication), ← (left implication), ∧ (conjunc-
tion), ∗ (fusion), ∨ (disjunction) and ·• (involution). Small letters p, q, . . . are
used to denote propositional variables, Greek small letters α, β, . . . are used to
denote formulae, and Greek capital letters �,�, . . . are used to represent finite
(possibly empty) sequences of formulae. �• denotes the sequence 〈γ •|γ ∈ �〉. A
sequence � is also expressed as [�]. A sequent is an expression of the form � ⇒ α

where α is non-empty (i.e. a formula). The symbol ≡ is used to denote equality
as sequences of symbols. �∗ denotes δ1 ∗ · · · ∗ δn if � ≡ 〈δ1, . . . , δn〉 (1 ≤ n),
and denotes an empty sequence if � is empty. �� denotes �∗ if � ≡ 〈δ1, . . . , δn〉
(1 ≤ n), and denotes 1 if � is empty. If a sequent S is provable in a sequent
system L, then such a fact is denoted as L �S, and sometimes denoted as �S

for L �S by omitting L. Since all logics discussed in this paper are formulated
as sequent calculi, we will occasionally identify a sequent calculus with the logic
determined by it.

2. SEQUENT CALCULI

First, we introduce FL (full Lambek logic2 ).
The initial sequents of FL are of the forms:

α ⇒ α, ⇒ 1, � ⇒ �, �,⊥,� ⇒ γ .

The cut rule of FL is of the form:
� ⇒ α �, α,� ⇒ γ

�,�,� ⇒ γ
(cut).

The inference rules of FL are of the forms:
�,� ⇒ γ

�, 1,� ⇒ γ
(1we),

� ⇒ α �, β,� ⇒ γ

�, α → β,�,� ⇒ γ
(→left),

�, α ⇒ β

� ⇒ α → β
(→right),

� ⇒ α �, β,� ⇒ γ

�,�, α ← β,� ⇒ γ
(←left),

α, � ⇒ β

� ⇒ α ← β
(←right),

�, α, β,� ⇒ γ

�, α ∗ β,� ⇒ γ
(∗left),

� ⇒ α � ⇒ β

�,� ⇒ α ∗ β
(∗right),

2 Strictly speaking, the logic presented is the propositional full Lambek logic without the multiplicative
falsum constant 0, or equivalently the modality-free propositional non-commutative intuitionistic
linear logic without 0.
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�, α,� ⇒ γ

�, α ∧ β, � ⇒ γ
(∧ left1),

�, β, � ⇒ γ

�, α ∧ β, � ⇒ γ
(∧ left2),

� ⇒ α � ⇒ β

� ⇒ α ∧ β
(∧ right),

�, α, � ⇒ γ �, β, � ⇒ γ

�, α ∨ β,� ⇒ γ
(∨ left),

� ⇒ α

� ⇒ α ∨ β
(∨ right1),

� ⇒ β

� ⇒ α ∨ β
(∨ right2).

BIQL (basic involutive-quantale logic) is obtained from FL by adding the
initial sequents and inference rules of the forms:

⇒ 1•, � ⇒ �•, �,⊥•,� ⇒ γ ,

� ⇒ α

� ⇒ α•• (• right),
�, α,� ⇒ γ

�, α••,� ⇒ γ
(•left),

�,� ⇒ γ

�, 1•,� ⇒ γ
(•1 we),

� ⇒ α• �, β•, � ⇒ γ

�, (α → β)•,�,� ⇒ γ
(• → left),

�, α• ⇒ β•

� ⇒ (α → β)•
(• → right),

� ⇒ α• �, β•, � ⇒ γ

�,�, (α ← β)•, � ⇒ γ
(• ← left),

α•, � ⇒ β•

� ⇒ (α ← β)•
(• ← right),

�, β•, α•,� ⇒ γ

�, (α ∗ β)•,� ⇒ γ
(• ∗ left),

� ⇒ β• � ⇒ α•

�,� ⇒ (α ∗ β)•
(• ∗ right),

�, α•,� ⇒ γ

�, (α ∧ β)•,� ⇒ γ
(• ∧ left 1),

�, β•,� ⇒ γ

�, (α ∧ β)•,� ⇒ γ
(• ∧ left 2),

� ⇒ α• � ⇒ β•

� ⇒ (α ∧ β)•
(• ∧ right),

�, α•,� ⇒ γ �, β•,� ⇒ γ

�, (α ∨ β)•,� ⇒ γ
(• ∨ left),

� ⇒ α•

� ⇒ (α ∨ β)•
(• ∨ right 1),

� ⇒ β•

� ⇒ (α ∨ β)•
(• ∨ right 2).

We define two logics IQL (involutive-quantale logic) and QIQL
(quasi-involutive- or twist-free-involutive-quantale logic) later.

IQL = BIQL + (•mono) + (•mono−1)

where (•mono) and (•mono−1) are of the forms:

α ⇒ β

α• ⇒ β• (• mono),
α• ⇒ β•

α ⇒ β
(• mono−1)
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where α may be empty.

QIQL = BIQL − (• ∗ left) − (• ∗ right) + (• ∗ left′) + (• ∗ right′)

where (•∗left′) and (•∗right′) are of the forms:

�, α•, β•,� ⇒ γ

�, (α ∗ β)•,� ⇒ γ
(• ∗ left′),

� ⇒ α• � ⇒ β•

�,� ⇒ (α ∗ β)•
(• ∗ right′).

Next, we give two embeddings of BIQL and QIQL into FL, which are a slight
modification of the embedding (for a logic with strong negation) introduced by
Rautenberg (1979). We fix a set PR of propositional variables used as components
of the language of the logics with ·•, and define the set PR′ := {p′|p ∈ PR} of
propositional variables. The language L• of the logics with ·• is defined by using
PR, 1,�,⊥, ∧,∨, ∗,→,← and ·•. The language L of FL is obtained from L•

by adding PR′ and by deleting ·•.

Definition 2.1. A mapping f from L• to L is defined as follows.

1. f (p) := p and f (p•) := p′ ∈ PR′ for any p ∈ PR,
2. f (♦) := ♦ where ♦ ∈ {1,�,⊥},
3. f (α♦β) := f (α)♦f (β) where ♦ ∈ {∗,∧,∨,→,←},
4. f (♦•) := ♦ where ♦ ∈ {1,�,⊥},
5. f (α••) := f (α),
6. f ((α ∗ β)•) := f (β•) ∗ f (α•),
7. f ((α♦β)•) := f (α•)♦f (β•) where ♦ ∈ {∧,∨,→,←}.

A mapping g from L• to L is also defined as the same conditions
1–5 and 7, and the following condition.

8. g((α ∗ β)•) := g(α•) ∗ g(β•).

Let � be a sequence of formulae in L•. Then, f (�) (or g(�)) denotes the
result of replacing every occurence of a formula α in � by an occurence of f (α)
(or g(α), respectively). The following proposition means that QIQL is essentially
equivalent to FL, i.e. the involution operator can be expressed as propositional
variables. This means syntactically that twist-free-involutive quantales, which
correspnd to QIQL, are essentially equivalent to quantales, which correspond to
FL.

Proposition 2.2. (Involution-elimination) Let � be a sequence of formulae in
L•, γ be a formula in L•, and f and g be mappings defined in Definition 2.1.

(1) if BIQL � � ⇒ γ , then FL � f (�) ⇒ f (γ ).
(2) if FL − (cut) � f (�) ⇒ f (γ ), then BIQL − (cut) � � ⇒ γ ,
(3) if QIQL � � ⇒ γ , then FL � g(�) ⇒ g(γ ).
(4) if FL − (cut) � g(�) ⇒ g(γ ), then QIQL − (cut) � � ⇒ γ .
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We may not derive such an resemble result for IQL directly because of the
existence of (•mono).

Using Proposition 2.2, we can show the following main theorem.

Theorem 2.3. (Cut-elimination for BIQL and QIQL) Let L be BIQL or QIQL.
The rule (cut) is admissible in cut-free L.

Proof: We only show the case for BIQL. Suppose that BIQL � � ⇒ γ . Then,
we have FL � f (�) ⇒ f (γ ) by Proposition 2.2 (1). Assuming the well-known
cut-elimination theorem for FL, we can obtain FL−(cut) � f (�) ⇒ f (γ ). By
Proposition 2.2 (2), we obtain BIQL−(cut) � � ⇒ γ . �

This theorem will also be proved semantically in Section 6.
We do not know whether the cut-elimination theorem for IQL holds or not.
Using Theorem 2.3, we can show the following.3

Corollary 2.4. Let L be BIQL and QIQL. L is decidable and is a conservative
extension of FL.

We remark that the rules of the forms:

� ⇒ α••

� ⇒ α
(• right−1),

�, α••,� ⇒ γ

�, α,� ⇒ γ
(• left−1)

are admissible in cut-free BIQL and cut-free QIQL, and derivable in IQL.
We then have the following.4

Lemma 2.5. The rule

� ⇒ α

�• ⇒ α• (• regu)

is admissible in cut-free QIQL.

Proof: We prove this by induction on the cut-free proof P of the upper sequent
� ⇒ α of (•regu) in QIQL. We distinguish the cases according to the last inference
of P . We show only the following case.

(Case (•∗left′)): The last inference rule of P is of the form:

�1, β
•, γ •, �2 ⇒ α

�1, (β ∗ γ )•, �2 ⇒ α
(• ∗ left′)

3 BIQL and QIQL have no subformula property, but we can give the calculi called the “subformula
calculi” which have such a property, by applying a similar way as in (Kamide, 2004).

4 An analogous result for a negation rule holds for a minimal quantum logic (see Takano, 1995).
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where � ≡ 〈�1, (β ∗ γ )•, �2〉. By the hypothesis of induction, we have that �
�•

1, β
••, γ ••, �•

2 ⇒ α•, and hence

�•
1, β

••, γ ••, �•
2 ⇒ α•

...(•left−1)

�•
1, β, γ, �•

2 ⇒ α•

�•
1, β ∗ γ, �•

2 ⇒ α• (∗left)

�•
1, (β ∗ γ )••, �•

2 ⇒ α• (•left).
�

We remark that this lemma does not work for BIQL because the application
of (∗left) in the proof of the case for (•∗left) in a similar setting displayed earlier
cannot be adopted.

The rule

�• ⇒ α•

� ⇒ α
(•regu−1)

is also derivable in QIQL + (•regu).
Then, we have the following theorem.

Theorem 2.6. QIQL and QIQL + (•regu) + (•regu−1) are theorem-equivalent.

We need this theorem to prove the completeness theorem (w.r.t. twist-free-
involutive-quantale model) for QIQL.

Next, we consider the exchange rule:

�, α, β,� ⇒ γ

�, β, α,� ⇒ γ
(ex).

Then, we have the following.

Proposition 2.7. BIQL + (ex), QIQL + (ex) and IQL + (ex) are theorem-
equivalent.

We note that QIQL + (ex) is theorem-equivalent to QILL in (Kamide, 2004).
Using (•regu), (•regu−1), (•mono) and (•mono−1), we can obtain the fol-

lowing characteristic property which is introduced in (Kamide, 2004).

Theorem 2.8. (Quantization Principle) Let L be QIQL or IQL. For any formula
α, L � ⇒ α if and only if L � ⇒ α•.

This theorem means intuitively that the existence of the parallel worlds in
the sense of the theory of quantum mechanics, i.e. there are a number of worlds
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(including our real world) with coherence in parallel. In this context, “� ⇒ α”
means “α is true in our (chosen) real-world”, and “� ⇒ α•” means “α is true in
another (unchosen) parallel world.”

Finally in this section, we review the original involutive-quantale logic, called
FLI , which is introduced by MacCaull (1997). FLI is obtained from FL (with the
addition of the inference rule and initial sequent for the multiplicative falsum
constant 0) by adding the following inference rules:

� ⇒ α

�∗• ⇒ α• ,
�, γ ⇒ α

�, γ ⇒ α•• ,
�, γ ⇒ α••

�, γ ⇒ α

�, γ ⇒ α• ∗ β•

�, γ ⇒ (β ∗ α)•
,

�, γ ⇒ (α ∗ β)•

�, γ ⇒ (β• ∗ α)•
,

�, γ ⇒ ∨
(α•

i )

�, γ ⇒ (
∨

αi)•
,

�, γ ⇒ (
∨

αi)•

�, γ ⇒ ∨
(α•

i )

where ∨ is an infinite disjunction connective.

3. INVOLUTIVE QUANTALE MODELS

Definition 3.1. (Quantale) A unitale quantale is a structure Q := 〈Q,
⋃

, ·, 1̇〉
satisfying the following conditions:

1. 〈Q,
⋃〉 is a complete lattice (the least element and the greatest element

are respectively denoted by ⊥̇ and �̇, and the binary versions of the lattice
operations are denoted by ∪ and ∩),

2. 〈Q, ·, 1̇〉 is a monoid with the identity 1̇,
3. (

⋃
xi) · y = ⋃

(xi · y) and y · (
⋃

xi) = ⋃
(y · xi) for all xi, y ∈ Q.

We define two operations →̇ and ←̇ on Q as follows:

y→̇z :=
⋃

{x|x · y ≤ z} and y←̇z :=
⋃

{x|y · x ≤ z}
where ≤ is defined as x ≤ y iff x ∪ y = y for all x, y ∈ Q. Then the following
condition on Q holds using the condition 3 mentioned earlier:

(x ≤ y→̇z iff x · y ≤ z) and (x ≤ y←̇z iff y · x ≤ z) for all x, y, z ∈ Q.

We call the unitale quantale equiped with ⊥̇, �̇,∪,∩, →̇ and ←̇, quantale in the
following.

We remark that the following monotonicity condition on a quantale Q holds:

x ≤ x ′ and y ≤ y ′ imply x · y ≤ x ′ · y ′, x ′→̇y ≤ x→̇y ′ and x ′←̇y ≤
x←̇y ′ for all x, x ′, y, y ′ ∈ Q.

Definition 3.2. (Involutive and twist-free-involutive quantales) An involutive
quantale is a structure Q• := 〈Q, ·◦〉 satisfying the following conditions:
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1. Q is a quantale 〈Q,
⋃

, ·, 1̇〉 equiped with ⊥̇, �̇,∪,∩, →̇ and ←̇ (Defini-
tion 3.1),

2. ·◦ is a unary operation on Q such that

C1: x◦◦ = x,

C2: (
⋃

xi)◦ = ⋃
(xi)◦,

C3: (x · y)◦ = y◦ · x◦(twist condition),
C4: (x ∩ y)◦ = x◦ ∩ y◦,
C5: (x→̇y)◦ = x◦→̇y◦,
C6: (x←̇y)◦ = x◦←̇y◦,
C7: 1̇◦ = 1̇,

C8: �̇◦ = �̇,

C9: ⊥̇◦ = ⊥̇.

A twist-free-involutive or quasi-involutive quantale is a structure Q� := 〈Q, ·◦〉
satisfying the same condition 1 earlier, and ·◦ is a unary operation on Q satisfying
the same conditions C1, C2 and C4−C9 earlier, and the following condition5 :

C10 : (x · y)◦ = x◦ · y◦.

We can derive the following condition on Q• and Q� by using C1 and C2:

C2′ : x ≤ y iff x◦ ≤ y◦ for all x, y ∈ Q.

The original involutive quantales in (Mulvey and Pelletier, 1992) do not
have the conditions C4, C5, C6, C8, C9, C10 (and the operations and constants
∩, →̇, ←̇, ⊥̇, �̇).

Definition 3.3. A valuation v on an involutive quantale Q• is a mapping from
the set of all propositional variables to Q. A valuation v is extended to a mapping
from the set of all formulae to Q by

1. v(1) := 1̇,
2. v(�) := �̇,
3. v(⊥) := ⊥̇,
4. v(α ∧ β) := v(α) ∩ v(β),
5. v(α ∨ β) := v(α) ∪ v(β),
6. v(α ∗ β) := v(α) · v(β),
7. v(α→β) := v(α)→̇v(β),
8. v(α←β) := v(α)←̇v(β),
9. v(α•) := v(α)◦.

A valuation v on a twist-free-involutive quantale Q� is the same as that for Q•.

5 We remark that the conditions C3 and C10, respectively, correspond to the pair {(•∗left), (•∗right)}
and {(•∗left′), (•∗right′)}.
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Definition 3.4. (Involutive and twist-free-involutive quantale models) An invo-
lutive quantale model is a structure 〈Q•, v〉 such that Q• is an involutive quantale
and v is a valuation on Q•. A formula α is true in an involutive quantale model
〈Q•, v〉 if 1̇ ≤ v(α) holds, and valid in an involutive quantale Q• if it is true for
any valuation v on the involutive quantale. A sequent α1, . . . , αn ⇒ β (or ⇒ β)
is true in an involutive quantale model 〈Q•, v〉 if the formula α1 ∗ · · · ∗ αn→β (or
β) is true in it, and valid in an involutive quantale if so is α1 ∗ · · · ∗ αn→β (or β).
A twist-free-involutive quantale model 〈Q�, v〉 and the corresponding notions as
defined earlier are also defined similarly.

By using a similar (but a slightly different) way as in (Kamide, 2004), we can
show the following soundness and completeness theorems. The proofs of these
theorems will be given in the next section.

Theorem 3.5. (Soundness for IQL and QIQL) Let C 1 be the class of all invo-
lutive quantales, C2 be the class of all twist-free-involutive quantales, L(C1) :=
{S | a sequent S is valid in all involutive quantales of C1}, L(C2) := {S | a se-
quent S is valid in all twist-free-involutive quantales of C2}, L1 := {S|IQL�S}
and L2 := {S|QIQL�S}. Then, L1 ⊆ L(C1) and L2 ⊆ L(C2).

In the proof of this theorem, we have to use the operation ←̇ for the case of
(•→left) in the induction step. We can not adopt (•regu) to IQL, because the twist
condition derives the fact that v(γ 1 ∗ γ 2 ∗ γ 3)◦ = v(γ 3)◦ · v(γ 2)◦ · v(γ 1)◦.

Theorem 3.6. (Completeness for QIQL) Let L(C2) and L2 be the same as that
in Theorem 3.5. Then, L(C2) ⊆ L2.

This theorem is proved for QIQL + (•regu) + (•regu−1), which is
theorem-equivalent to QIQL by Theorem 2.6, constructing a canonical twist-free-
involutive-quantale model by using MacNeill completion technique. The con-
straction can be obtained based on (Ishihara and Hiraishi, 2001; Kamide, 2004).
The main differences from the proofs for the non-modal intuitionistic linear logic
in (Ishihara and Hiraishi, 2001; Larchey-Wendling and Galmiche, 2000) are the
exsistence of the case for ·• and the loss of the commutativity for the monoid
operation.

We may not prove the same theorem for IQL or BIQL, because we must use
(•regu) and (•regu−1), and the facts � �•� ⇒ ��• and � ��• ⇒ �•�, which are
not compatible to the twist condition.

The following is thus remained an open question.
Question: Is IQL complete with respect to the presented involutive quantale model?
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4. PROOFS OF THEOREMS 3.5 AND 3.6

4.1. Proof of Theorem 3.5

We only show the proof for the theorem for QIQL by induction on a proof P

of QIQL. The proof is straightforward and similar to that for FL. We distinguish
the cases according to the last inference rules in P . We assume the associativity
for the monoid operation ·, and hence we do not use the parenthesis with respect
to ·.

(Case (•→left)):6 The last inference rule of P is of the form:

� ⇒ α• �, β•, � ⇒ γ

�, (α → β)•,�,� ⇒ γ
(• → left).

By the hypothesis of induction, we have (1) 1̇ ≤ v(�∗→α•) and (2) 1̇ ≤ v(�∗ ∗
β• ∗ �∗→γ ). We show 1̇ ≤ v(�∗ ∗ (α→β)• ∗ �∗ ∗ �∗→γ ). By (1) and (2), we
obtain (3) v(�∗) ≤ v(α•) and (4) v(β•) ≤ v(�∗)←̇(v(�∗)→̇v(γ )), because

1̇ ≤ v(�∗ ∗ β• ∗ �→γ ) iff

v(�∗) · v(β•) · v(�∗) ≤ v(γ ) iff

v(�∗) · v(β•) ≤ v(�∗)→̇v(γ ) iff

v(β•) ≤ v(�∗)←̇(v(�∗)→̇v(γ )).

By (3), (4) and the monotonicity condition, we obtain:

v(α•)→̇v(β•) ≤ v(�∗)→̇(v(�∗)←̇(v(�∗)→̇v(γ ))).

We have the fact that (5) v(α•)→̇v(β•) iff v(α)◦→̇v(β)◦ iff (v(α)→̇v(β))◦ iff
v(α→β)◦ iff v((α→β)•). We thus obtain:

v(α•)→̇v(β•) ≤ v(�∗)→̇(v(�∗)←̇(v(�∗)→̇v(γ ))) iff

(v(α•)→̇v(β•)) · v(�∗) ≤ v(�∗)←̇(v(�∗)→̇v(γ )) iff

v(�∗) · (v(α•)→̇v(β•)) · v(�∗) ≤ v(�∗)→̇v(γ ) iff

v(�∗) · (v(α•)→̇v(β•)) · v(�∗) · v(�∗) ≤ v(γ ) iff

v(�∗) · (v(α→β)•)) · v(�∗) · v(�∗) ≤ v(γ ) (by(5)) iff

1̇ ≤ v(�∗ ∗ (α→β)• ∗ �∗ ∗ �∗→γ ).

(Case (•regu)): The last inference rule of P is of the form:

� ⇒ α

�• ⇒ α• (•regu).

6 We remark that in this case, we have to use the operation ←̇.
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First, we show the case for � ≡ ∅, i.e. 1̇ ≤ v(α) implies 1̇ ≤ v(α•). Suppose
1̇ ≤ v(α). Then, we have 1̇◦ ≤ v(α)◦ by C2′, and hence we have 1̇ ≤ v(α•) by C7.
Next, we show the case for � �= ∅. In this case, we only consider the case for � ≡
〈γ 1, γ 2, γ 3〉, i.e. we show that 1̇ ≤ v(γ 1 ∗ γ 2 ∗ γ 3→α) implies 1̇ ≤ v(γ •

1 ∗ γ •
2 ∗

γ •
3→α•). Suppose 1̇ ≤ v(γ 1 ∗ γ 2 ∗ γ 3→α). Then, we have v(γ 1 ∗ γ 2 ∗ γ 3) ≤

v(α), and hence
v(γ 1 ∗ γ 2 ∗ γ 3) ≤ v(α) iff

v(γ 1 ∗ γ 2 ∗ γ 3)◦ ≤ v(α)◦(by C2′) iff

v(γ 1)◦ · v(γ 2)◦ · v(γ 3)◦ ≤ v(α)◦ (by C10)7 iff

v(γ •
1) · v(γ •

2) · v(γ •
3) ≤ v(α•) iff

v(γ •
1 ∗ γ •

2 ∗ γ •
3) ≤ v(α•) iff

1̇ ≤ v(γ •
1 ∗ γ •

2 ∗ γ •
3→α•).

4.2. Proof of Theorem 3.6

We prove the completeness theorem for QIQL + (•regu) + (•regu−1), which
is theorem-equivalent to QIQL by Theorem 2.6, constructing a canonical twist-
free-involutive-quantale model.

First, we construct a structure M := 〈M, ·, [],≤〉 such that

1. M := {[�]|[�] is a finite sequence of formulae},
2. [�] · [�] := [�,�] (the concatenation),
3. [] is an empty sequence,
4. [�] ≤ [�] is defined as �� ⇒ ��.

[�]
.= [�] is defined as [�] ≤ [�] and [�] ≤ [�].

M is a pre-ordered monoid, i.e. the following conditions hold for M:

1. 〈M, ·, []〉 is a monoid with the identity [],
2. 〈M,≤〉 is a pre-ordered set,
3. x1 ≤ x2 and y1 ≤ y2 imply x1 · y1 ≤ x2 · y2 for all x1, x2, y1, y2 ∈ M .

Next, we construct the power set structure P(M) := 〈P (M),
⋃

, ◦, {[]}〉 of M
such that

1. P (M) is the power set of M ,
2.

⋃
is usual set theoretic infinite union (we also assume usual set theoretic

operations ∪ and ∩),
3. ◦ is defined as

X ◦ Y := {x · y|x ∈ X and y ∈ Y } for all X, Y ∈ P (M).

7We remark that this case can not be adapted for IQL. Using the twist condition, we have v(γ 1 ∗ γ 2 ∗
γ 3)◦ = v(γ 3)◦ · v(γ 2)◦ · v(γ 1)◦. Thus, we can not adopt (•regu) for IQL.
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We define two operations →̇ and ←̇ as

Y→̇Z := {x|∀y ∈ Y (x · y ∈ Z)},

Y←̇Z := {x|∀y ∈ Y (y · x ∈ Z)}
for all Y,Z ∈ P (M). We assume M (the greatest element) and ∅ (the least element)
as the constants in P (M). We can derive the following conditions:

X ⊆ Y→̇Z iff X ◦ Y ⊆ Z for all X, Y,Z ∈ P (M),

X ⊆ Y←̇Z iff Y ◦ X ⊆ Z for all X, Y,Z ∈ P (M).

We then have the following.

Proposition 4.1. P(M) is a quantale.

A unary operation C on the power set P (M) of M is called a closure operation
if the following properties hold: for all X, Y ∈ P (M),

X ⊆ CX,

CCX ⊆ CX,

CX ◦ CY ⊆ C(X ◦ Y ),

X ⊆ Y implies CX ⊆ CY.

X is called a C-closed element of P (M) if CX = X ∈ P (M).
Then, we construct a structure C(P(M)) := 〈C(P (M)),

⋃
c, ◦c, C{[]}〉 such

that

1. C is a closure operation on P (M) called a MacNeille closure such that
CX := (X→)← where X→ := {y|∀x ∈ X(x ≤ y)} and X← := {y|∀x ∈
X(y ≤ x)},

2. C(P (M)) is the set of all C-closed elements of P (M),
3.

⋃
c is defined as

⋃
c Xi := C(

⋃
Xi) for all Xi ∈ P (M),

4. ◦c is defined as X ◦c Y := C(X ◦ Y ) for all X, Y ∈ P (M).

We assume the elements M (the greatest element) and C∅ (the least element)
of C(P (M)).

We remark that C(P (M)) is closed under the operations ∩,
⋃

c, ◦c, →̇ and
←̇. This closure operation C has the following properties: for all X, Y ∈ P (M),

C(CX ∪ CY) = C(X ∪ Y ),

C(CX ◦ CY ) = C(X ◦ Y ),

CCX = CX.
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Then we can show the following.

Proposition 4.2. C(P(M)) is a quantale.

We can show the following.

Lemma 4.3. Let C be the MacNeille closure on P (M). Then, for any [�], [�] ∈
M ,

1. C{[�]} = {[�]|�� ⇒ ��},
2. C{[�]} ⊆ C{[�]} iff �� ⇒ ��,
3. C{[(��) ∨ (��)]} = C{[�], [�]}.

Proof:

(1) First, we show C{[�]} ⊆ {[�]| � � ⇒ ��}. Suppose [�] ∈ C{[�]}.
Then,

[�] ∈ ({[�]}→)← iff

∀[	] ∈ {[�]}→(� � ⇒ 	�) iff

∀[	](∀[
] ∈ {[�]}(� 
 ⇒ 	�) implies � � ⇒ 	�) iff

∀[	](� � ⇒ 	� implies � � ⇒ 	�).

Taking � for 	, we obtain � � ⇒ ��. This means [�] ∈ {[�]| �
� ⇒ ��}. The converse is obvious using (cut) and (∗left).

(2) First, we show that C{[�]} ⊆ C{[�]} implies � � ⇒ ��. Suppose
C{[�]} ⊆ C{[�]} holds. Then we have [�] ∈ {[�′]| � �′ ⇒ ��} ⊆
{[�′]| � �′ ⇒ ��} by Lemma 4.3 (1). Therefore � � ⇒ ��. Next
we show the converse. We show that, for any [	], if � 	 ⇒ ��

then � 	 ⇒ ��. Suppose � 	 ⇒ �� and � � ⇒ ��. Then we obtain
� 	 ⇒ �� by (∗left) and (cut).

(3) First, we show C{[(��) ∨ (��)]} ⊆ C{[�], [�]}. Suppose [�] ∈
C{[(��) ∨ (��)]}. Then (*): � � ⇒ (��) ∨ (��) by Lemma 4.3 (1).
We show [�] ∈ C{[�], [�]}, that is, if � � ⇒ 	� and � � ⇒ 	� then
� � ⇒ 	� for any [	] ∈ M because we have that

[�] ∈ ({[�], [�]}→)← iff

∀[	] ∈ {[�], [�]}→(� � ⇒ 	�) iff

∀[	](∀[
] ∈ {[�], [�]}(� 
 ⇒ 	�) implies � � ⇒ 	�).

Suppose � � ⇒ 	�, � � ⇒ 	� and (*). We obtain � � ⇒ 	� by
(∨left), (∗left) and (cut). Next we show C{[�], [�]} ⊆ C{[(��) ∨
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(��)]}. Suppose [�] ∈ C{[�], [�]}, that is, for any [	] ∈ M , if
� � ⇒ 	� and � � ⇒ 	� then � � ⇒ 	�. Taking (��) ∨ (��) for
	�, we obtain � � ⇒ (��) ∨ (��). Therefore, [�] ∈ C{[(��) ∨ (��)]} by
Lemma 4.3 (1). �

We introduce a structure M� := 〈M, ·, [],≤, ·◦〉 (called a pre-ordered monoid
with twist-free- or quasi-involution) such that

1. 〈M, ·, [],≤〉 is M, the pre-ordered monoid,
2. ·◦ is a unary operation on M such that

[�]◦ := [�•] = 〈γ •|γ ∈ �〉.
We construct the powerset structure P(M�) := 〈P (M),

⋃
, ◦, {[]}, ·◦p 〉 such

that

1. 〈P (M),
⋃

, ◦, {[]}〉 is P(M),
2. ·◦p is a unary operation such that

X◦p := {[�]◦|[�] ∈ X} for all X ∈ P (M).

Proposition 4.4. P(M�) is a twist-free-involutive quantale.

Proof: We only verify the conditions C1, C2, C4–C10.
(Case C1): We show X◦p◦p = X for any X ∈ P (M). We have:

X◦p◦p

= {[�]◦|[�] ∈ {[�]◦|[�] ∈ X}}
= {[�••]|[�] ∈ X}
= {[�]|[�] ∈ X}(by [�••]

.= [�])

= X.

(Case C2): We only consider the binary case: (X ∪ Y )◦p = X◦p ∪ Y ◦p for any
X, Y ∈ P (M). We have:

(X ∪ Y )◦p

= {[�]◦|[�] ∈ {[	]|[	] ∈ X ∪ Y }}
= {[	•]|[	] ∈ X or [	] ∈ Y }
= {[�•]|[�] ∈ X} ∪ {[�•]|[�] ∈ Y }
= X◦p ∪ Y ◦p .
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(Case C4): We show (X ∩ Y )◦p = X◦p ∩ Y ◦p for any X, Y ∈ P (M). We have:

(X ∩ Y )◦p

= {[�]◦|[�] ∈ X ∩ Y }
= {[�•]|[�] ∈ X and [�] ∈ Y }
= {[�•]|[�] ∈ X} ∩ {[�•]|[�] ∈ Y }
= X◦p ∩ Y ◦p .

(Case C5): We show (X→̇Y )◦p = X◦p→̇Y ◦p for any X, Y ∈ P (M). We have:

(X→̇Y )◦p

= {[	]◦|[	] ∈ {[�]|∀[�] ∈ X([�,�] ∈ Y )}}
= {[	•]|∀[�] ∈ X([	,�] ∈ Y )}.

On the other hand, we have:

X◦p→̇Y ◦p

= {[	′]|∀[�′] ∈ X◦p ([	′, �′] ∈ Y ◦p )}
= {[	′]|∀[�′]([�′] = [�]◦ and [�] ∈ X)([	′, �′] = [�]◦ and [�] ∈ Y )}.

Then we take �′ ≡ �• and 	′ ≡ 	•, and hence X◦p→̇Y ◦p = {[	•]|∀[�] ∈
X([	,�] ∈ Y )}.

(Case C6): We show (X←̇Y )◦p = X◦p←̇Y ◦p for any X, Y ∈ P (M). We have:

(X←̇Y )◦p

= {[	]◦|[	] ∈ {[�]|∀[�] ∈ X([�,�] ∈ Y )}}
= {[	•]|∀[�] ∈ X([�,	] ∈ Y )}.

On the other hand, we have:

X◦p←̇Y ◦p

= {[	′]|∀[�′] ∈ X◦p ([�′,	′] ∈ Y ◦p )}
= {[	′]|∀[�′]([�′] = [�]◦ and [�] ∈ X)([�′,	′] = [�]◦ and [�] ∈ Y )}.

Then we take �′ ≡ �• and 	′ ≡ 	•, and hence X◦p←̇Y ◦p = {[	•]|∀[�] ∈
X([�,	] ∈ Y )}.

(Case C7): We have:

{[]}◦p = {[�]◦|[�] ∈ {[]}} = {[�]◦|[�] = []} = {[]◦} = {[]}.
(Case C8): We show M◦p = M .

M◦p
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= {[�]◦|[�] ∈ M}
= {[�•]|[�] ∈ M}
= {[�•]|[�••] ∈ M} (by [�••]

.= [�])

= {[	]|[	•] ∈ M}.
We have that [	•] ∈ M iff [	] ∈ M . Then {[	]|[	•] ∈ M} = {[	]|[	] ∈ M} =
M .

(Case C9): We have:

∅◦p = {[�]◦|[�] ∈ ∅} = ∅.

(Case C10): We show (X ◦ Y )◦p = X◦p ◦ Y ◦p for any X, Y ∈ P (M). We have:

(X ◦ Y )◦p

= {[	]◦|[	] ∈ X ◦ Y }
= {[�•,�•]|[�] ∈ X and [�] ∈ Y }
= {[�•] · [�•]|[�•] ∈ X◦p and [�•] ∈ Y ◦p }
= X◦p ◦ Y ◦p . �

Next, we construct C(P(M�)) := 〈C(P (M)),
⋃

c, ◦c, C{[]}, ·◦c 〉 such that

1. 〈C(P (M)),
⋃

c, ◦c, C{[]}〉 is C(P(M)),
2. ·◦c is a unary operation such that

X◦c := C(X◦p ) for all X ∈ P (M).

Lemma 4.5. Let C be the MacNeille closure on P (M). Then, (C{[�]})◦c =
C{[�•]} for any [�] ∈ M .

Proof:

(C{[�]})◦c

= C((C{[�]})◦p )

= C({[�]| � � ⇒ ��}◦p ) (by Lemma 4.3(1))

= C{[	]◦|[	] ∈ {[�]| � � ⇒ ��}}
= C{[�•]| � � ⇒ ��}
= C{[�•]| � �• ⇒ ��•} (by (•regu) and (•regu−1))

= C{[�•]| � �• ⇒ �•�} (by [�•�]
.= [��•] and (cut))
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= C{[�]| � � ⇒ �•�}
= C(C{[�•]}) (by Lemma 4.3(1))

= C{[�•]}. �

We may not prove the same lemma for IQL or BIQL, as presented earlier,
because we must use (•regu) and (•regu−1), and the fact [�•�]

.= [��•], which is
not compatible to the twist condition.

By using Lemmas 4.3 (2) and 4.5, we can show the following monotonicity
condition for ·◦c :

X ⊆ Y iff X◦c ⊆ Y ◦c for any X, Y ∈ C(P (M)).

To show this condition, it is sufficient to prove the following:

C{[�]} ⊆ C{[�]} iff (C{[�]})◦c ⊆ (C{[�]})◦c ,

because we have Lemma 4.3 (3). We show this as follows.

C{[�]} ⊆ C{[�]} iff

� � ⇒ �� (by Lemma 4.3 (2)) iff

� �• ⇒ ��• (by (• regu) and (• regu−1)) iff

� �• ⇒ �•� (by [(��)•]
.= [(�•)�] and (cut)) iff

(C{[�]})◦c ⊆ (C{[�]})◦c (by Lemmas 4.3 (2) and 4.5).

We show that C(P (M)) is closed under the operation ·◦c . Suppose X ∈
C(P (M)), i.e. X = CX. Then by the monotonicity condition for ·◦c , we have:

X◦c = (CX)◦c = C((CX)◦p ) = C(X◦p ) = C(C(X◦p )) = C(X◦c ).

Therefore, X◦c ∈ C(P (M)).
We then have the following.

Proposition 4.6. C(P(M�)) is a twist-free-involutive quantale.

Proof: We only verify the conditions C1, C2, C4–C10. It is sufficient to consider
that all the elements of C(P (M)) are of the form C{[�]} (i.e. {[�]| � � ⇒ ��}),
because we have the fact C{[	1], [	2], . . . , [	n]} = C{[(	�

1) ∨ (	�
2) ∨ · · · ∨

(	�
n)]} by Lemma 4.3 (3).

(Case C1): By Lemma 4.5 and the fact [�••]
.= [�] ∈ M , we have

(C{[�]})◦c◦c = C{[�••]} = C{[�]}.
(Case C2): We show (C{[�]} ∪c C{[�]})◦c = (C{[�]})◦c ∪c (C{[�]})◦c .

We can verify [((��) ∨ (��))•]
.= [(��)• ∨ (��)•]

.= [(�•)� ∨ (�•)�] for any
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[�], [�] ∈ M . Then we have:

(C{[�]} ∪c C{[�]})◦c

= (C(C{[�]} ∪ C{[�]}))◦c

= (C({[�]} ∪ {[�]}))◦c

= (C{[�], [�]})◦c

= (C{[(��) ∨ (��)]})◦c (by Lemma 4.3(3))

= C{[((��) ∨ (��))•]} (by Lemma 4.5)

= C{[(��)• ∨ (��)•]}
= C{[(�•)� ∨ (�•)�]}
= C({[�•]} ∪ {[�•]}) (by Lemma 4.3 (3))

= C(C{[�•]} ∪ C{[�•]})
= C{[�•]} ∪c C{[�•]}
= (C{[�]})◦c ∪c (C{[�]})◦c (by Lemma 4.5).

(Case C4): We show (C{[�]} ∩ C{[�]})◦c = (C{[�]})◦c ∩ (C{[�]})◦c . Be-
fore the proof, we show (*): C{[�]} ∩ C{[�]} = C{[(��) ∧ (��)]}. Suppose
[	] ∈ C{[�]} ∩ C{[�]}. Then we have � 	 ⇒ �� and � 	 ⇒ �� by Lemma
4.3 (1). Thus, we have � 	 ⇒ (��) ∧ (��) by (∧right), and hence [	] ∈
C{[(��) ∧ (��)]} by Lemma 4.3 (1). We can show the converse by using (cut)
and the fact that � (��) ∧ (��) ⇒ �� and � (��) ∧ (��) ⇒ ��. We can verify
the fact that [((��) ∧ (��))•]

.= [(��)• ∧ (��)•]
.= [(�•)� ∧ (�•)�]. Next we show

the following required fact by using (*):

(C{[�]} ∩ C{[�]})◦c

= (C{[(��) ∧ (��)]})◦c (by (∗))

= C{[((��) ∧ (��))•]} (by Lemma 4.5)

= C{[(��)• ∧ (��)•]}
= C{[(�•)� ∧ (�•)�]}
= C{[�•]} ∩ C{[�•]} (by (∗))

= (C{[�]})◦c ∩ (C{[�]})◦c (by Lemma 4.5).

(Case C5): We show (C{[�]}→̇C{[�]})◦c = (C{[�]})◦c→̇(C{[�]})◦c . Be-
fore the proof, we show (*): C{[(��)→(��)]} = C{[�]}→̇C{[�]}. Suppose
[
] ∈ C{[(��)→(��)]}, that is, � 
 ⇒ (��)→(��), and hence, � 
,�� ⇒ ��.
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We will show [
] ∈ C{[�]}→̇C{[�]}, that is, [
] ∈ {�1| � �1 ⇒ ��}→̇{�2| �
�2 ⇒ ��} by Lemma 4.3 (1), and hence (**): ∀[	](� 	 ⇒ �� implies
� 
,	 ⇒ ��). By � 
,�� ⇒ ��, � 	 ⇒ �� and (cut), we obtain
� 
,	 ⇒ ��. Next we show the converse. Suppose [
] ∈ C{[�]}→̇C{[�]},
that is, (**). We will show [
] ∈ C{[(��)→(��)]}, that is, � 
,�� ⇒ ��. Tak-
ing �� for 	 in (**), we have � 
,�� ⇒ ��. Moreover, we can verify the fact
[((��)→(��))•]

.= [(��)•→(��)•]
.= [(�•)�→(�•)�] ∈ M . Next we show the re-

quired fact by using (*):

(C{[�]}→̇C{[�]})◦c

= (C{[(��)→(��)]})◦c (by (∗))

= C{[((��)→(��))•]} (by Lemma 4.5)

= C{[(��)•→(��)•]}
= C{[(�•)�→(�•)�]}
= C{[�•]}→̇C{[�•]} (by (∗))

= (C{[�]})◦c→̇(C{[�]})◦c (by Lemma 4.5).

(Case C6): We show (C{[�]}←̇C{[�]})◦c = (C{[�]})◦c←̇(C{[�]})◦c . Be-
fore the proof, we show (*): C{[(��)←(��)]} = C{[�]}←̇C{[�]}. Suppose
[
] ∈ C{[(��)←(��)]}, that is, � 
 ⇒ (��)←(��), and hence, � ��,
 ⇒ ��.
We will show [
] ∈ C{[�]}←̇C{[�]}, that is, [
] ∈ {�1| � �1 ⇒ ��}←̇{�2| �
�2 ⇒ ��} by Lemma 4.3 (1), and hence (**): ∀[	](� 	 ⇒ �� implies �
	,
 ⇒ ��). By � ��,
 ⇒ ��, � 	 ⇒ �� and (cut), we obtain � 	,
 ⇒ ��.
Next we show the converse. Suppose [
] ∈ C{[�]}←̇C{[�]}, that is, (**). We will
show [
] ∈ C{[(��)←(��)]}, that is, � ��,
 ⇒ ��. Taking �� for 	 in (**),
we have � ��,
 ⇒ ��. Moreover, we can verify the fact [((��)←(��))•]

.=
[(��)•←(��)•]

.= [(�•)�←(�•)�] ∈ M . Next we show the required fact by using
(*):

(C{[�]}←̇C{[�]})◦c

= (C{[(��)←(��)]})◦c (by (∗))

= C{[((��)←(��))•]} (by Lemma 4.5)

= C{[(��)•←(��)•]}
= C{[(�•)�←(�•)�]}
= C{[�•]}←̇C{[�•]} (by (∗))

= (C{[�]})◦c←̇(C{[�]})◦c (by Lemma 4.5).

(Case C7): (C{[]})◦c = C{[]◦} = C{[]}.
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(Case C8): M◦c = C(M◦p ) = CM = M .
(Case C9): We have:

(C∅)◦c

= C((C∅)◦p )

= C((C{[⊥]})◦p )

= C({[�]| � � ⇒ ⊥}◦p ) (by Lemma 4.3 (1))

= C{[�]◦| � � ⇒ ⊥}
= C{[�•]| � �• ⇒ ⊥•} (by (•regu) and (•regu−1))

= C{[	]| � 	 ⇒ ⊥•}
= C(C{[⊥•]}) (by Lemma 4.3 (1))

= C{[⊥•]}
= C{[⊥]}
= C∅.

(Case C10): We show (C{[�]} ◦c C{[�]})◦c = (C{[�]})◦c ◦c (C{[�]})◦c ). We
have:

(C{[�]} ◦c C{[�]})◦c

= (C(C{[�]} ◦ C{[�]}))◦c

= (C({[�]} ◦ {[�]}))◦c

= (C{[�,�]})◦c

= C{[�•,�•]} (by Lemma 4.5)

= C({[�•]} ◦ {[�•]})
= C(C{[�•]} ◦ C{[�•]})
= C{[�•]} ◦c C{[�•]}
= (C{[�]})◦c ◦c (C{[�]})◦c (by Lemma 4.5).

�

Next we define a valuation on C(P(M�)). A valuation v on C(P(M�)) is a
mapping from the set of all propositional variables to C(P (M)) such that

v(p) := C{[p]}.
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We can extend to the mapping from the set � of all formulae to C(P (M)), that is,
we can prove the following by induction on the complexity of α ∈ �:

v(α) = C{[α]}.
Here, we only show the case α ≡ β•, i.e. we show v(β•) = C{[β•]}. This case is
proved using the induction hypothesis and Lemma 4.5 as follows:

v(β•) = v(β)◦c = (C{[β]})◦c = C{[β•]}.
This completes the construction of a canonical twist-free-involutive-quantale
model for QIQL. Using this model, we can prove the required completeness
theorem for QIQL.

5. PHASE MODELS

Definition 5.1. (Intuitionistic non-commutative phase space) An intuitionistic
non-commutative phase space is a structure 〈M, cl〉 satisfying the following con-
ditions:

1. M := 〈M, ·, 1〉 is a monoid with the identity 1,
2. cl is a closure operation on P (M) such that, for any X, Y ∈ P (M),

C1: X ⊆ cl(X),
C2: clcl(X) ⊆ cl(X),
C3: X ⊆ Y implies cl(X) ⊆ cl(Y ),
C4: cl(X) ◦ cl(Y ) ⊆ cl(X ◦ Y ),
where the operation ◦ is defined as X ◦ Y := {x · y|x ∈ X and y ∈ Y }.

Definition 5.2. (Intuitionistic non-commutative phase structure) We define con-
stants and operations on P (M) as follows: for any X, Y ∈ P (M),

1̇ := cl{1},
�̇ := M,

⊥̇ := cl(∅),

X→̇Y := {y|∀x ∈ X(y · x ∈ Y )},
X←̇Y := {y|∀x ∈ X(x · y ∈ Y )},
X∧̇Y := X ∩ Y,

X∨̇Y := cl(X ∪ Y ),

X∗̇Y := cl(X ◦ Y ).



Gentzen-Type Calculi for Involutive Quantales 421

We define D := {X ∈ P (M)|X = cl(X)}. Then

D := 〈D, →̇, ←̇, ∗̇, ∧̇, ∨̇, 1̇, �̇, ⊥̇〉
is called an intuitionistic non-commutative phase structure.8

We remark that D is closed under the operations →̇, ←̇, ∗̇, ∧̇ and ∨̇, and
1̇, �̇, ⊥̇ ∈ D.

Definition 5.3. (Involutive and twist-free-involutive valuations) Involutive val-
uations v+ and v− on an intuitionistic non-commutative phase structure D :=
〈D, →̇, ←̇, ∗̇, ∧̇, ∨̇, 1̇, �̇, ⊥̇〉 are mappings from the set of all propositional vari-
ables to D. Then, v+ and v− are extended to mappings from the set of all formulae
to D by

1. v+(1) := 1̇,
2. v+(�) := �̇,
3. v+(⊥) := ⊥̇,
4. v+(α ∧ β) := v+(α)∧̇v+(β),
5. v+(α ∨ β) := v+(α)∨̇v+(β),
6. v+(α ∗ β) := v+(α)∗̇v+(β),
7. v+(α→β) := v+(α)→̇v+(β),
8. v+(α←β) := v+(α)←̇v+(β),
9. v+(α•) := v−(α),

10. v−(1) := 1̇,
11. v−(�) := �̇,
12. v−(⊥) := ⊥̇,
13. v−(α ∧ β) := v−(α)∧̇v−(β),
14. v−(α ∨ β) := v−(α)∨̇v−(β),
15. v−(α ∗ β) := v−(β)∗̇v−(α),
16. v−(α→β) := v−(α)→̇v−(β),
17. v−(α←β) := v−(α)←̇v−(β),
18. v−(α•) := v+(α).

Twist-free-involutive valuations v+ and v− on D are defined in a similar way, but
the negative valuation v− is obtained from that for the involutive valuations by
replacing the condition 15 by

19. v−(α ∗ β) := v−(α)∗̇v−(β).

An intuitive meaning of the involutive or twist-free-involutive valuations is
that, for a quantum {0, 1}-analogy, v+ and v− respectively correspond to provabil-
ity in the 1-state and provability in the 0-state.

8 An intuitionistic non-commutative phase structure as a model of non-commutative intuitionistic
linear logic was established by Abrusci (1990). Another more general algebraic framework, called
pretopology, was also established by Sambin (1995).
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Definition 5.4. (Intuitionistic non-commutative phase model) An intuitionis-
tic non-commutative phase model for BIQL (QIQL) is a structure 〈D, v+, v−〉
such that D is an intuitionistic non-commutative phase structure, and v+ and v−

are involutive valuations (twist-free-involutive valuations, respectively). A for-
mula α is true in an intuitionistic non-commutative phase model 〈D, v+, v−〉 for
BIQL (QIQL) if 1̇ ⊆ v+(α) (or equivalently 1 ∈ v+(α)) holds, and involutive valid
(twist-free-involutive valid) in an intuitionistic non-commutative phase structure
D if it is true for any involutive valuations (twist-free-involutive valuations, re-
spectively) v+ and v− on the intuitionistic non-commutative phase structure. A
sequent α1, . . . , αn ⇒ β (or ⇒ β) is true in an intuitionistic non-commutative
phase model 〈D, v+, v−〉 for BIQL (QIQL) if the formula α1 ∗ · · · ∗ αn→β (or
β) is true in it, and involutive valid (twist-free-involutive valid, respectively) in an
intuitionistic non-commutative phase structure if so is α1 ∗ · · · ∗ αn→β (or β).

Theorem 5.6. (Soundness and completeness for BIQL and QIQL) Let C be
the class of all intuitionistic non-commutative phase structures, L1(C ) := {S | a
sequent S is involutive valid in all intuitionistic non-commutative phase structures
of C }, L2(C ) := {S | a sequent S is twist-free-involutive valid in all intuitionistic
non-commutative phase structures of C }, L1 := {S | BIQL�S} and L2 := {S |
QIQL�S}. Then, L1 = L1(C) and L2 = L2(C).

The proof of this main theorem will be given in the next section.
Since the difference between the phase model for FL and the proposed

phase model for QIQL is only the use of the negative valuation v−, this theorem
means semantically that twist-free-involutive quantales are essentially equivalent
to quantales.

6. PROOF OF THEOREM 5.5

The proof of the soundness part is straightforward, and hence is omitted.
Using a modified version of the method by Okada (2002), we can show the
completeness parts for BIQL and QIQL, and can obtain the cut-elimination the-
orems for these logics at the same time. The proof is only given for BIQL in the
following.

Definition 6.1. We define a monoid 〈M, ·, 1〉 as follows:

1. M := {[�]|[�] is a finite sequence of formulae},
2. [�] · [�] := [�,�],
3. 1 := [].

We define the following: for any formula α,

‖α‖+ := {[�]| �cf � ⇒ α},
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‖α‖− := {[�]| �cf � ⇒ α•}
where �cf means “cut-free provable in BIQL.” We have the fact

‖α‖+ = ‖α•‖−

for any formula α. This fact is verified using the rules (•right) and (•right−1),
where (•right−1) is admissible in cut-free BIQL. We then define

D := {X|X =
⋂

i∈I

‖αi‖+} = {X|X =
⋂

i∈I

‖βi‖−}

for arbitrary indexing set I , and arbitrary formula αi and βi ≡ α•
i . Then, we define

cl(X) :=
⋂

{Y ∈ D|X ⊆ Y }.
We define the following constants and operations on P (M): for any X, Y ∈ P (M),

l̇ := cl{1},
�̇ := M,

⊥̇ := cl(∅),

X→̇Y := {[�]|∀[�] ∈ X([�,�] ∈ Y )},
X←̇Y := {[�]|∀[�] ∈ X([�,�] ∈ Y )},
X∧̇Y := X ∩ Y,

X∨̇Y := cl(X ∪ Y ),

X∗̇Y := cl(X ◦ Y ) where X ◦ Y := {[�,�]|[�] ∈ X and [�] ∈ Y }.
Involutive valuations v+ and v− are mappings from the set of all propositional
variables to D such that

v+(p) := ‖p‖+,

v−(p) := ‖p‖−

for any propositional variable p.
We have the following: for any X, Y,Z ∈ P (M),

X ◦ Y ⊆ Z iff X ⊆ Y→̇Z,

Y ◦ X ⊆ Z iff X ⊆ Y←̇Z.

We remark that D is closed under arbitrary
⋂

.

Lemma 6.2. Let D be defined earlier and Dc := {X ∈ P (M)|X = cl(X)}. Then,
D = Dc.
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Proof: First, we show Dc ⊆ D. Suppose X ∈ Dc. Then X = cl(X) = ⋂{Y ∈
D|X ⊆ Y } ∈ D. Next, we show D ⊆ Dc. Suppose X ∈ D. We show X ∈ Dc, i.e.
X = ⋂{Y ∈ D|X ⊆ Y }. To show this, it is sufficient to prove that

(1) X ⊆ {[�]|∀W [W ∈ D and X ⊆ W imply [�] ∈ W ]},
(2) {[�]|∀W [W ∈ D and X ⊆ W imply [�] ∈ W ]} ⊆ X.

First, we show (1). Suppose [�] ∈ X and asuume W ∈ D and X ⊆ W for any W .
Then we have [�] ∈ X ⊆ W . Next we show (2). Suppose [�] ∈ {[�]|∀W [W ∈ D

and X ⊆ W imply [�] ∈ W ]}. By the assumption X ∈ D and the fact X ⊆ X, we
have [�] ∈ X. �

Lemma 6.3. For any X, Y ∈ P (M), if X ⊆ M and Y ∈ D, then X→̇Y ∈ D and
X←̇Y ∈ D.

Proof: We show only X←̇Y ∈ D using the assumptions. Before the proof, we
remark that the rules

� ⇒ α ← β

α, � ⇒ β
(← right−1)

�, α ∗ β,� ⇒ γ

�, α, β,� ⇒ γ
(∗left−1)

are admissible in cut-free BIQL.
Suppose X ⊆ M and Y ∈ D. We have:

X←̇Y

= X←̇
⋂

i∈I

‖αi‖+

= {[�]|∀[�] ∈ X([�,�] ∈ {[	]|∀i ∈ I ([	] ∈ ‖αi‖+)})}
= {[�]|∀[�] ∈ X(∀i ∈ I (�cf �,� ⇒ αi))}
= {[�]|∀[�] ∈ X(∀i ∈ I (�cf � ⇒ �∗←αi))}

(by using (∗left), (∗left−1), (←right) and (←right−1))

= {[�]|∀[�] ∈ X(∀i ∈ I ([�] ∈ ‖�∗←αi‖+))}
=

⋂
{‖�∗←αi‖+|i ∈ I and [�] ∈ X} ∈ D. �

Then we can show the following.

Proposition 6.4. The structure D := 〈D, →̇, ←̇, ∗̇, ∧̇, ∨̇, 1̇, �̇, ⊥̇〉 defined
above forms an intuitionistic non-commutative phase structure.

Proof: We can verify that D is closed under →̇, ←̇, ∗̇, ∧̇ and ∨̇. In particular,
for →̇ and ←̇, we use Lemma 6.3. The fact 1̇, �̇, ⊥̇ ∈ D is obvious. We can
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verify that the conditions C1–C4 for closure operation hold for this structure. The
conditions C1–C3 are obvious. We only show C4: cl(X) ◦ cl(Y ) ⊆ cl(X ◦ Y ) for
any X, Y ∈ P (M). We assume the following facts, which will be proved later: for
any X, Y ∈ P (M),

(*) cl(X) · Y ⊆ cl(X ◦ Y ),
(**) X · cl(Y ) ⊆ cl(X ◦ Y ).

By using the facts (*) and (**) and Lemma 6.2, we have:

cl(X) ◦ cl(Y ) ⊆ cl(cl(X) ◦ Y ) ⊆ cl(cl(X ◦ Y )) = cl(X ◦ Y ).

We show the remained facts (*) and (**). We have X ◦ Y ⊆ cl(X ◦ Y ) by
the condition C1, and hence X ⊆ Y→̇cl(X ◦ Y ) and Y ⊆ X←̇cl(X ◦ Y ) hold.
Moreover, by the condition C3, we have cl(X) ⊆ cl(Y→̇cl(X ◦ Y )) and cl(Y ) ⊆
cl(X←̇cl(X ◦ Y )). Here, by cl(X ◦ Y ) ∈ D and Lemma 6.3, we have Y→̇cl(X ◦
Y ) ∈ D and X←̇cl(X ◦ Y ) ∈ D. Thus, we obtain

cl(X) ⊆ cl(Y→̇cl(X ◦ Y )) = Y→̇cl(X ◦ Y ),

cl(Y ) ⊆ cl(X←̇cl(X ◦ Y )) = X←̇cl(X ◦ Y )

by Lemma 6.2. Therefore, we obtain the required facts. �

Lemma 6.5. (Key lemma) Let α be any formula. Then,

(1) [α] ∈ v+(α) ⊆ ‖α‖+,
(2) [α•] ∈ v−(α) ⊆ ‖α‖−.

Proof: We can prove this lemma by (simultaneous) induction on the complexcity
of α. We demonstrate some cases for the induction step for (2).

(Case α ≡ β• for (2)): First we show [β••] ∈ v−(β•). By the induction hy-
pothesis for (1), we have

[β] ∈ v+(β) =
⋂

i∈I

‖δi‖+ = {[�]|∀i ∈ I ([�] ∈ ‖δi‖+)}.

Thus, we obtain:

∀i ∈ I ([β] ∈ ‖δi‖+) iff

∀i ∈ I (�cf β ⇒ δi) implies

∀i ∈ I (�cf β•• ⇒ δi) (by (•left)) iff

[β••] ∈ v+(β) = v−(β•).
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Next, we show v−(β•) ⊆ ‖β•‖−. Suppose [�] ∈ v−(β•). Then we have [�] ∈
v−(β•) = v+(β) ⊆ ‖β‖+ by the induction hypothesis for (1). This means �cf

� ⇒ β, and hence we obtain �cf � ⇒ β•• by (•right). Therefore, [�] ∈ ‖β•‖−.
(Case α ≡ β ∗ γ for (2)): We show [(β ∗ γ )•] ∈ v−(β ∗ γ ) ⊆ ‖β ∗ γ ‖−.
First, we show [(β ∗ γ )•] ∈ v−(β ∗ γ ), i.e.

[(β ∗ γ )•] ∈ v−(β ∗ γ ) iff

[(β ∗ γ )•] ∈ v−(γ )∗̇v−(β) iff

[(β ∗ γ )•] ∈ cl(v−(γ ) ◦ v−(β)) iff

[(β ∗ γ )•] ∈
⋂

{Y ∈ D|v−(γ ) ◦ v−(β) ⊆ Y } iff

∀W [W ∈ D and v−(γ ) ◦ v−(β) ⊆ W imply [(β ∗ γ )•] ∈ W ].

Suppose W ∈ D and v−(γ ) ◦ v−(β) ⊆ W . By the induction hypothesis, we have
[β•] ∈ v−(β) and [γ •] ∈ v−(γ ). Hence, we have

[γ •, β•] ∈ v−(γ ) ◦ v−(β) ⊆ W =
⋂

i∈I

‖δi‖+ ∈ D.

Thus, we obtain [γ •, β•] ∈ ⋂
i∈I ‖δi‖+ = {[�]|∀i ∈ I ([�] ∈ ‖δi‖+)}, i.e. ∀i ∈

I (�cf γ •, β• ⇒ δi). Then, we have ∀i ∈ I (�cf (β ∗ γ )• ⇒ δi) by (•∗left). There-
fore, [(β ∗ γ )•] ∈ ⋂

i∈I ‖δi‖+ = W .
Second, we show v−(β ∗ γ ) ⊆ ‖β ∗ γ ‖−. Suppose [�] ∈ v−(β ∗ γ ). We

show [�] ∈ ‖β ∗ γ ‖−. For the assumption, we have

[�] ∈ v−(β ∗ γ ) iff

[�] ∈ v−(γ )∗̇v−(β) iff

[�] ∈ cl(v−(γ ) ◦ v−(β)) iff

[�] ∈
⋂

{Y ∈ D|v−(γ ) ◦ v−(β) ⊆ Y } iff

∀W [W ∈ D and v−(γ ) ◦ v−(β) ⊆ W imply [�] ∈ W ].

For this, if W = ‖β ∗ γ ‖−, then [�] ∈ ‖β ∗ γ ‖−. Thus, it is sufficient to prove that
v−(γ ) ◦ v−(β) ⊆ ‖β ∗ γ ‖−. Now we prove this. Suppose [�] ∈ v−(γ ) ◦ v−(β).
Then [�] ≡ [�1,�2], [�1] ∈ v−(γ ) and [�2] ∈ v−(β). By the induction hy-
pothesis, we have [�1] ∈ v−(γ ) ⊆ ‖γ ‖− and [�2] ∈ v−(β) ⊆ ‖β‖−, and hence
�cf �1 ⇒ γ • and �cf �2 ⇒ β•. By applying (•∗right) to these, we have �cf

� ⇒ (β ∗ γ )•. This means [�] ∈ ‖β ∗ γ ‖−.
(Case α ≡ β ∨ γ for (2)): First, we show [(β ∨ γ )•] ∈ v−(β ∨ γ ), i.e.

[(β ∨ γ)•] ∈ v−(β ∨ γ ) = v−(β)∨̇v−(γ) = cl(v−(β) ∪ v−(γ )) = ∩{Y ∈ D|v−(β)
∪ v−(γ ) ⊆ Y }. Thus, we show

∀W [W ∈ D and v−(β) ∪ v−(γ ) ⊆ W imply [(β ∨ γ )•] ∈ W ].
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Suppose W ∈ D and v−(β) ∪ v−(γ ) ⊆ W , and the induction hypothesis [β•] ∈
v−(β) and [γ •] ∈ v−(γ ). Then, we have

[γ •], [β•] ∈ v−(β) ∪ v−(γ ) ⊆ W =
⋂

i∈I

‖δi‖+ = {[�]|∀i ∈ I ([�] ∈ ‖δi‖+)},

and hence ∀i ∈ I (�cf β• ⇒ δi and �cf γ • ⇒ δi). Thus, we obtain ∀i ∈ I (�cf

(β ∨ γ )• ⇒ δi) by (•∨left). This means [(β ∨ γ )•] ∈ ⋂
i∈I ‖δi‖+ = W .

Second, we show v−(β ∨ γ ) ⊆ ‖β ∨ γ ‖−. Suppose [�] ∈ v−(β ∨ γ ). Then,
we have [�] ∈ cl(v−(β) ∪ v−(γ )), i.e.

∀W [W ∈ D and v−(β) ∪ v−(γ ) ⊆ W imply [�] ∈ W ].

We take ‖β ∨ γ ‖− for W . If we can show v−(β) ∪ v−(γ ) ⊆ ‖β ∨ γ ‖−, then
[�] ∈ ‖β ∨ γ ‖−. Thus, we prove this. Suppose [�] ∈ v−(β) ∪ v−(γ ). Then, [�] ∈
v−(β) ∪ v−(γ ) ⊆ ‖β‖− ∪ ‖γ ‖− by the induction hypothesis, and hence we obtain
[�] ∈ ‖β‖− or [�] ∈ ‖γ ‖−, i.e. �cf � ⇒ β• or �cf � ⇒ γ •. For both cases, we
can obtain �cf � ⇒ (β ∨ γ )• by (•∨right1) or (•∨right2). This means [�] ∈
‖β ∨ γ ‖−. �

By using this key lemma, we can obtain the completeness theorem for BIQL
as follows. If formula α is true, then [] ∈ v+(α). On the other hand v+(α) ⊆ ‖α‖+,
and hence [] ∈ ‖α‖+, that means “α is cut-free provable.” By combining this with
the soundness theorem, we also obtain the cut-elimination theorem for BIQL.
Using a similar way, we can also prove the completeness and cut-elimination
theorems for QIQL.
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